OCR Manganate(VII) redox titrations

(OCR student book ISBN 978-0-19-835197-0, p380)

Manganate(VII) titrations can be used to analyse many different reducing agents, for example Fe(II) ions / $\mathrm{Fe}^{2+}(\mathrm{aq})$.

A student tried to answer the following question recently. The answer the student got was out by a factor of 10, and the student could not work out why this was. Here's the solution:

Q5

A metal ore contains Fe (II). 6.46 g of the ore is dissolved in sulfuric acid and the resulting solution is made up to $250.0 \mathrm{~cm}^{3} .25 .0 \mathrm{~cm}^{3}$ of this solution is titrated against $21.40 \mathrm{~cm}^{3}$ of $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII) solution. Calculate the percentage by mass of iron(II) in the sample of ore. (1 mark)

Answer:

m (ore) $=6.46 \mathrm{~g}$
Start off by listing everything you know from the question in a neat list with everything labelled.

```
\(V_{\text {total }}(\) ore \()=250.0 \mathrm{~cm}^{3}=0.250 \mathrm{dm}^{3} \quad\) Don't forget to convert \(\mathrm{cm}^{3}\) to \(\mathrm{dm}^{3}\) !
\(V_{\text {used }}(\) ore \()=25.0 \mathrm{~cm}^{3}=0.0250 \mathrm{dm}^{3}\)
\(V_{\text {used }}\left(\mathrm{MnO}_{4}^{-}\right)=21.40 \mathrm{~cm}^{3}=0.02140 \mathrm{dm}^{3}\)
\(c\left(\mathrm{MnO}_{4}^{-}\right)=0.0200 \mathrm{~mol} \mathrm{dm}^{-3}\)
\(m\left(\mathrm{Fe}^{2+}\right)=\) ?
```

1. From what we know we can calculate the moles of MnO_{4}^{-}:

$$
n_{\text {used }}\left(\mathrm{MnO}_{4}^{-}\right)=c V=0.02140 \mathrm{dm}^{3} \times 0.0200 \mathrm{~mol} \mathrm{dm}^{-3}=4.28 \times 10^{-4} \mathrm{~mol}
$$

2. You should know from the course and your redox titrations that the reaction is based on the reaction:
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{Fe}^{2+}(\mathrm{aq})->\mathrm{Mn}^{2+}(\mathrm{aq})+5 \mathrm{Fe}^{3+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$.
Therefore the molar ratio between MnO_{4}^{-}and Fe^{2+} is $1: 5$.
Use this to calculate the moles of Fe^{2+} used in the titration:
$n_{\text {used }}\left(\mathrm{Fe}^{2+}\right)=5 \times 4.28 \times 10^{-4} \mathrm{~mol}=2.14 \times 10^{-3} \mathrm{~mol}$
3. These are the moles used in the experiment. We know that we used only $\frac{1}{10}$ of the original solution of $\mathrm{MnO}_{4}^{-}\left(25 \mathrm{~cm}^{3}\right.$ instead of $\left.250 \mathrm{~cm}^{3}\right)$.

The total number of moles in the total solution is therefore $10 x$ the amount just calculated in step 2:
$n_{\text {total }}\left(\mathrm{MnO}_{4}^{-}\right)=10 \times 2.14 \times 10^{-3} \mathrm{~mol}=2.14 \times 10^{-2} \mathrm{~mol}$

This is where the factor of 10 was dropped by the student.
4. Now we can calculate the mass of Fe^{2+} in the ore:
$m_{\text {in ore }}\left(\mathrm{Fe}^{2+}\right)=n M=2.14 \times 10^{-2} \mathrm{~mol} \times 55.85 \mathrm{~g} \mathrm{~mol}^{-1}=1.19519 \mathrm{~g}$
5. Now we're nearly there as all that's left now it to calculate the percentage by mass of Fe (II) in the ore:
$\%=\frac{1.19519}{6.46} \times 100=18.5 \%$

